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Phase stability in Ni-Ti alloys 

D H Le, C Colinet, P Hicter and A Pasture1 
Laboratoire de Thermodynamique et Physico-Chimie MCtallurgiques, ENSEEG, BP 75, 
38402. Saint-Martin-d'H2res. France 

Received 7 March 1991, in final form 3 lune 1991 

Abstract. A tighl-binding bond model is used for a quantitative study of electronic inter- 
actions in nickel-titanium compounds. The model is not an ab inilio calculation. but it 
requiresonly the dataon the elemental properties of pure metalconstituents that are readily 
available in the literature. Combined with an extended cluster Bethe lattice method (CBLM) 
for FCC- and xc-based solid solutions and the 82 phase, and thc recursion method for NiTi, 
and Ni,Ti stoichiometric compounds, this approach allows the energy of formation of these 
alloys to be calculated and the chemical trends in the orderingeffects 10 be analysed. 

1. Introduction 

In recent years, materials based on Ni and Ti have been extensively studied for their 
promising practical applications. Around the equiatomic composition, Ni-Ti alloys 
exhibit interesting shape memory effects and corrosion resistance. Their expanding use 
in nickel-based superalloys and the possibility of creating amorphous phases are other 
interesting properties. To obtain a quantitative understanding of these properties, the 
underlying thermodynamic properties have to be known with respect to composition 
and temperature or, in other terms, the study of the alloy properties depends critically 
on a knowledge of the relevant phase diagrams. A fundamental explanation of the 
formation of phases is a difficult task because the necessary calculations must combine, 
at a high level of accuracy, both quantum mechanical and statistical thermodynamical 
contributions. Recently, tight-binding (TB) calculations in conjunction with the cluster 
variational method (CVM) [1-6] have shown that quantitatively reasonable phase dia- 
grams displaying either a miscibility gap like that of the Cr-Mo system or the ordered 
intermetallic compounds like the Ti-Rh system can be obtained. The computational 
scheme used in these studies is summarized as follows. 

(i) The CVM is a reliable statistical thermodynamical model developed to calculate 
temperature-composition diagrams; this method has the advantage of incorporating 
both short- and long-range order (SRO and LRO) in the description of the thermodynamic 
behaviour of binary and multicomponent alloys. The CVM requires, as input, interaction 
parameters that determine the ordering, or clustering, reactions. 

(ii) The interactions are then obtained numerically by means of electronic structure 
calculations: two rather different procedures have beenused toobtain theseinteractions; 
the starting point for one is the ordered state while for the other is the disordered state. 

0953-8984/91/407895 + 12$03.50@ 1991 IOPPublishing Ltd 7895 
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In the first approach, the total energy is assumed to be written as a sum of configuration- 
independent many-body interaction potentials multiplied by the multisite correlation 
functions [7]. The sum runs over all the cluster types but in practice it  requires the 
existence of a maximum cluster beyond which the many-body interactions are supposed 
to benegligible. In thesecondapproach,theideaistousethecompletelydisorderedstate 
as the one described by the coherent-potential approximation (CPA) as an appropriate 
reference medium [8]. The effectiveclusterinteractionsare calculated by the embedded- 
cluster method [9] or by the generalized perturbation method (GPM) [IO] using a per- 
turbative treatment about the completely disordered state. In this case the ordering 
energies can be written as an expression in t e rm of concentration-dependent ith-order 
effective cluster interactions. These calculations can be carried out either in the KKR- 
CPA [lo] or tight-binding [ll] schemes. At this level of approximation an alternative 
method of describing short-range order in alloys has been proposed by Robbins and 
Falicov [12]. Despite the fact that their approach relieson a topological approximation, 
the Bethe lattice, it has the great advantage of including SRO explicitly in the calculation 
of the electronic spectrum and intemal energy. Off-diagonal disorder and self-consistent 
effects of charge transfer are taken into account, contributions that have been shown to 
be of consequence in the variation of energy with SRO [13]. In what follows we compare 
the TBCBLM and TBCPA-GPM methods for the Ni-Ti system. The quantities compared 
are the total energy of the random alloy, the first nearest-neighbour interactions for FCC- 
based phases and the first- and second-nearest-neighbour interactions for Bcc-based 
phases. To make this study complete we have used the recursion method to calculate 
the total energies of the two complex NiTia and Ni3Ti compounds and compared the 
values thus obtained with those provided by the TB-CBLM or =PA-GPM methods for 
fictitious FCC or Bcc-based compounds. In section 2 we present a brief review of the 
theory used in our calculations and our results are discussed in section 3. 

2. Theory 

2.1. Total energy and the tight-binding Hamiltonian 

Ingeneral the total energycan be written as the sum of two terms, 

where the labels imply that the division has been made in such a way that around the 
equilibrium volume the first contribution is repulsive and the second attractive. In a 
tight-bindingmodel [14] it isgenerally assumed that the repulsiveenergy is welldescribed 
by an empirical pair potential 

where the attractive contribution stems from the quantum mechanical bonding between 
the atoms. Within the tight-binding approximation this term is given by 

The first term represents the sum of the one-electron energies, the second and third 
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terms the double-counting corrections for the electron-electron interaction, which has 
been counted twice in the first term. The last term stands for the interionic Coulomb 
interactions. 

The one-electron total energy (Ele) is given simply by integrating the density of 
electronic state N ( E )  multiplied by the energy E up to the Fermi energy EF: 

E,, = 1"' EN(E) dE. 
-r 

(4) 

In this paper the electrons are described by the following one-electron m Hamiltonian: 

where lib) represents an orbital b centred at site i. We consider in equation (5) five 
atomic d orbitals per lattice site (A = lS), these orbitals being chosen such that they 
verify the orthogonality relationship. Accordingly, the contributions of the s and p 
electrons to the total energy are neglected. It is known that these contributions, via their 
hybridization with the d states, have to be taken into account to explain the cohesive 
properties of the transition metals, in particular at the beginning or at the end of a 
transition-metalseries[15], whichis thecase for titaniumandnickel. However,retaining 
the d part is sufficient to explain the strong negative values of the alloying formation 
energies in the Ni-Ti system [16]. At the end of the calculation we have neglected the 
contributions arising from magnetic interactions. 

Tbe on-site and hopping energies, that is E: and pirl,i# are assumed to depend only 
on the species of atom at the relevant sites and, in the case of the hopping parameters, 
the relative positions of the sites: 

(6) 

where I denotes the species I at site i; Y,A is the mean effective Coulomb potential seen 
by the A orbital on a type4 atom in a given alloy; it is calculated in two parts, an intrasite 
contribution (the effective direct exchange energy) Y p  and an intersite contribution 
(the effective Madelung energy), which is taken to be the same for all orbitals. 

The values of E? used in this study are listed in table 1. They have been calculated 
[16] for relativistic atoms in the configuration s'd'i-' where 2, is the number of valence 
electrons. This configuration is close to the s1.3dzi-1.3 CO nfiguration predicted by band 
structure calculations [17] and we have taken the number of d electrons to be equal to 
2, - 1.3 in our calculations. 

The hopping integralspirl,n.j,, areobtainedusing theslater-Koster [ 181 parametrization 
scheme. The Slater-Koster parameters depend on the atomic species located at sites i 
and j and on the distance between sites i and j .  The Slater-Koster parameters between 
like species are taken from Harrison [ 191 who has fitted the band widths ( Wi) of the pure 
metals predicted by Andersen and Jepsen [20]. These band widths are also given in table 
1. The spatial dependence of the hopping integrals has also been chosen using Harrison's 
prescription. Thismeansthat nearest- and next-nearest-neighbour hopping are included 
for Bcc-based superstructures while only nearest-neighbour interactions are taken into 
account for the other close-packed cubic or hexagonal structures studied in this paper. 
The expression for the Slater-Kosterparameters between unlike atomscan be calculated 
using the Shiba approximation [21]. 

Pi.i.jM = 6 1 . i , ~ p ( r )  

E n  = E?, + Y ,  
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Table 1. Tight-binding parameters for the Ni-Ti system, where U = 3 eV and V = 0.4 eV. 

Ti Ni 

N, 2.7 8.7 

4 (ev)  

.. . .  
I .". . . ,. 

(ev) 6.08 3.78 
0 -2.83 

~~ ~~~~ ~ - ~~ ~ 

The intra atomic electron-electron energy can be approximated by [ZZ]: 

Iu[xAni  + XS&] (7) E7 = 

where nA is the number of d electrons per A atom, xA is the concentration of A atoms 
and Urepresents the effective intrasite Coulomb interactions. 

To evaluate the intersite electron-electron interaction we assume that d electrons 
are distributed around the atoms spherically. The following expression is then obtained: 

where w is the dielectric constant of the medium, N is the total number of lattice sites 
and rij is the distance between sites iand j ;  (elni is the valence of the species on site i. 

The Coulomb ion-ion interaction isgiven by a similar expression, 

where IelZ, is the charge of an ion on site i. 

can be written as [U], 
The net contribution of the two last terms to the total energy largely cancels out and 

E : : E ~ ~  -E% = -v: E x l  I: Pl,(nlnj - npn:) (10) 
I J  

where V denotes the nearest-neighbour contribution to the average intersite potential 
per transferred electron; Anl = nl - np is the charge transfer to species 1 and Z is the 
coordination number. Plj describes the pair probabilities and n: is the valence of the 
species I that have no alloying effect. 

We can also use a decomposition other than equation (3) [24], which is easier 
to analyse but with the additional assumption that the charge transfer does not vary 
strongly withsR0;it has beenshown that thisassumptionischeckedfor binary transition 
metal alloys [24]. In this case, Ehnd is given by 

EF 
.Ebond = I, EN(E)  dE + V:xlxjuwc(Anl -An,)' (11) 

where uwc is the Warren-Cowley SRO parameter and JfF E N ( E )  dfi is the variation of 
the sum of one-electron energies that one would obtain by taking into account the 
variation with SRO of the kinetic Hamiltonian 

E SS, IiMipI 
f.%V 

but not that of E , ~ .  
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The calculation of JfF, EN(E) dE and its evolution with sRO now depends on the 
assumption made in obtaining N(E), either the TECPA-GPM approach, or the TECBLM 
approach. 

The energies of central interest in our study are the energies of formation, AE,, 
which is given by 

AE, = E,(alloy/struct, x )  - xE$ - (1 - x)EB (12) 

where E,(alloy/struct, x) denotes the total energy of the alloy AB at a concentration% 
of species A. The relative energy of stability is 

A&,, = E,(alloy/struct 1, x )  - E,(alloy/struct 2, x ) .  (13) 

The best way to obtain such quantities is to use equation (1) for the definition of ET, that 
is to add Emp to .Ebond and to use the structural energy difference theorem [25]. This 
approach has been used by Pettifor and co-workers to study the structural stability of 
the pd-bonded AB compound [26] and the sp-bonded elements [27]. The structural 
energy difference theorem, as a generalization of the frozen-potential theorem [28] 
allows the study of the relative stability of structures that may be characterized by 
very different local coordination numbers and hence different nearest-neighbour bond 
lengths. However, it requires a knowledge of the pairwise repulsive potential @(r,J. For 
d-band metals experience suggests a pair interaction of the form C/Rr with m = &lo 
[29], but little is known about the exact values of the exponent and of the prefactors. In 
fact, Erep has been neglected in our study for the following reasons. (i) It has been shown 
that this contribution may be neglected in the AEf calculations, the energy of formation 
being mainly the result ofstrongd-dinteractionsfor Ni-TialloysI 161. (ii) Forstructural 
stability, we have onlycompetition betweenclose-packed structures in the Ni-Tisystem, 
based on BCC, FCC or HCP lattices. which are not too different concerning their local 
environments. The relative stability energy has then been given only by comparing the 
bond energies of the two structures. In this approximation, for a given structure, the 
nearest-neighbour distance is kept constant on going from pure metals to compounds. 

2.2. The electronic density of states in the alloy 

The one-electron contribution to the total energy is related to the local density of states 
which can be obtained itself from the single-particle Green function: 

N l ( E )  = -x-' Im[G,,(E)] (14) 

where GII(E) is the projected Green function on site i: 

For a compound, to calculate the Green function on site i, we have used the recursion 
method [30], which consists in constructing from the basis of the five atomic d orbitals 
{la)} a new orthogonal basis {I&), k = 1,. . .}, where the tight-binding Hamiltonian 
matrix is tridiagonal. If Ih) is made equal to ]U), then the Green fundion of this 
Hamiltonian is given by the continued fraction 
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2 - - a 2 -  
z - a,  - . . . 

where {an} and (bJ are the matrix elements. 
The coefficients U, and bi are calculated up to a given step no and the local density 

of states is calculated using the Nex Gaussian quadrature method [31]. We repeat these 
calculations for all the non-equivalent sites of the studied compound and the electronic 
density of states of the compound is given by the sum of these local densities of states. 

For solid solutions, the configuration-averaged Green function at arbitrary con- 
centration and arbitrary SRO is required; two methods can be used to obtain such a 
quantity, that is the CBLM [23] or the CPA-CPM [I 11. 

In the coherent-potential approximation. CPA, only completely disordered alloyscan 
be studied, the projected average Green function of ani atom being calculated using the 
identity: 

c , , (E )  = [W,/W,]C&(E - a)[l + f,G&(E - U)] 

X a I ~ i k l  + X ~(R1.e) Iin)(jpI 

(17) 
where G+(z - a) is the Green operator that corresponds to the CPA Hamiltonian, 

r l  I I . , .P 

and G+(z)  is the Green function of the pure reference metal R (defined by E: = 0 and 
W, or PR1,J. The potential a is determined self-consistently by the condition on the 
scattering operators: 

(18) (f) = &,t, = 0 

where 

f, =A€,/[] - AE,G&[E - U)] AE, = ti - a (19) 
with 

G&(z) = 4 2 (OAlG+(r)lOA). (20) 
I 

To analyse the ordering effects in solid solutions it is necessary to use the GPM, the 
ordering energy being expressed in terms of pair and many-body interactions using a 
perturbation expansion of the random CPA energy in concentration fluctuations [ 111, 

[ G ' ( E - u ) T . ] ~  l/p 

where Td is the diagonal part of the scattering matrix and p is the order of the cluster 
expansion. It has been shown that for binary transition-metal alloys [32], the con- 
tributions of the triplet and larger cluster interactions to the ordering energy are small 
compared with that of the pairs, so we shall retain only the pair interactions in the 
following calculation. 

The other method of calculating the configuration-averaged Green function is the 
CBLM; in its simplest version, a simple single-atom cluster, the real lattice is replaced by 
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Figure 1. Experimenral 
Ni-Ti system [34]. 

phase diagram 

7901 

of the 

a Bethe lattice, the coordination number and the near distribution of the nearest 
neighbours being reproduced exactly. The mean Green function of atom I on site i is 
given by [33]: 

and 

where T&,) is the transfer matrix from an atom I to an atom J in the direction R, and 
G,(z, RK)  is the mean Green function of a J atom located on the auxiliary Bethe lattice, 
which is obtained from the initial Bethe lattice by removing the bond in the direction 
-Rc Hof is the Hamiltonian without hybridization and SRO appears in the definition of 
the pair probabilities (331. The one-electron contribution to the total energy is also 
calculated as a function of SRO and the one-electron contribution to the effective pair 
interactions is obtained from its dependence [2,5]. 

In what follows both approaches will be compared for the Ni-Ti system and the 
origin of SRO in FCC- and Bcc-based solid solutions will be analysed in terms of electronic 
interactions.' 

3. Discussion and results 

The Ni-Ti phase diagram displayed in figure 1 [34] is characterized by a liquid phase, a 
FCC (Al) phase at the Ni-rich end, a BCC (A2) phase at the Ti-rich end for high tempera- 
ture; two stoichiometric compounds NiTi, and Ni3Ti, and one intermediate phase with 
a variable range of solubility of NiTi. 

3.1. Energies of formation of compounds 

As a first step, we have calculated the energies of formation of the three intermediate 
phases observed in the equilibrium phase diagram. In the bericht structure notation, 
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Figure 2. Electronic densities of states of Ni,.Ti, 
compounds: (0). Ni,Ti; (b ) .  NiTi; (e ) ,  NiTil. 

E ( & )  

Figure 3. Partial densities of States of NiTi com- 
pounds: (a).dsfatesofNi;(b).dstatesofTi. 

these phases are called the DOz4 (Ni,Ti), B2 (NiTi) and E9, (NiTi,) phases. The DOZ4 
hexagonal and the E9, cubic phases are found experimentally to be stoichiometric 
compounds and are treated as such in the present work using the recursion method. The 
cubic B2 phase is reported from experiments to be stable over a large concentration 
range and will be treated as such using the CBLM or GPM-CPA approaches. 

To calculate the energies of these three compounds we have used the tight-binding 
Hamiltonian described previously, coupled with the recursion method with 15 exact 
steps of the continued fraction; the self consistency of charge transfer is taken into 
account via the electron-electron and ion-ion interactions as described in section 2.1. 
In  figure 2 the electronic densities of states of the three compounds are presented. They 
are characterized by a two-peak structure and the occurrence of a pseudogap; the lower 
energy states are mainly the d states of nickel while the upper energy states are the d 
states of the titanium as can be seen in figure 3 from the partial densities of states in the 
NiTi compound. For the energies of formation we obtain -46.4 kJ/atom, -47.0 U/ 
atom and -35.0kJ/atom, respectively, for the compounds Ni3Ti, NiTi and NiTi,. In 
table 2, the comparison with the experimental values obtained by different authors 
[35,36] showsthat ourcalculatedvalues areslightly morenegative thantheexperimental 
ones; the experimental asymmetry is also well reproduced by our calculations, the Ni,Ti 
compound displaying practically the same energy of formation as the NiTi compound. 

3.2. Effectioepair interactions and disordered alloys 

We have seen that the energy of formation of a solid solution with SRO can be written 
as a sum of the energy of formation of the random alloy AE,,,, and an ordering energy 
AEord. 
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Table 2. Calculated and experimental energies of formation of the compounds Ni3Ti. NiTi 
and NiTi?. 

NilTi -46.4 -35 I351 
-43 1361 

NiTi -47.0 -34 
-34 1361 

NiTi, -35.0 -27 P51 
- 29 [361 

x NI XNi 

Figure 4. Concentration dependence of [a) Erand 
and (b) 6V,  for Fcc-bascd structures. 

Figures. ConcentrationdependencsofEmnd.4V, 
and 3V, for Bcc-based stmctuces. 

To calculate these two contributions, two approaches can be adopted, either 
TEGPM-CPA or TB-CBLM as has been shown in section 2.2. We have kept only pair 
interactions to describe the ordering contribution to the energy, first-nearest-neighbour 
interactions have been retainedfor Fcc-based phases, whereas first- and second-nearest- 
neighbour interactions have been considered for Bcc-based phases. 

3.2.1. Fcc-basedstructures. Infigure4(a), wehaverepresentedthe concentrationdepen- 
dence of the calculated energy of mixing Era&) for the completely random FCC solid 
solution using both the TB-CBLM and TB-CPA approaches ( x  = xNi). The agreement 
between the two sets of calculations is very good, the greater the coordination number 
Z, the better the Bethe lattice approximation. We see that E,,&) displays negative 
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values at all concentrations and its minimum is shifted towards the Ni-rich part. This 
behaviour shows that the microscopic interactions that lead to the occurrence of stable 
compounds in this region are aIready present in the random solid solution. For all the 
compositions the charge transfer comes from the Ti d band to the Ni d band; however, 
it is small as, for instance, the value obtained for the equiatomic composition AnNi = 
0.14 electrons/atom. Thisresult indicatesthatthe self-consistent contribution from ionic 
bonding to the formation energies of these alloys is small. In the same way the effective 
pair interactions(Ep1) display astrongconcentrationdependence (see figure 4(b)). Their 
large positivevalueat theNi-richendisconsistent with theverystrongorderingtendency 
in Ni,Ti, which remains ordered up to its melting point. On the other hand, at the Ti- 
rich end, the value of the effective pair interaction drops rapidly, which is consistent 
with the fact that the ordered NiTi, compound has a complex structure. For both 
methods, the effective pair interactions are directly proportional to the ordering energy 
[5,11]. As the ordering energy is more sensitive to the details of the electronic density 
of states than Eland, it is not surprising that we find a larger difference for V ,  than for 
Erand between the two sets of results. We shall see that this comparison for BCC solid 
solutions will be still more difficult to do. 

3.2.2. BCC-based structures. For Bcc-based structures we have also represented the 
concentration dependence of the calculated energy of mixing Erand@) using the TEWBLM 
and TB-CPA approaches; the agreement between the two sets of calculations is worse 
than for the Fcc-based structures but it is still satisfying. This results from the fact that, 
on the one hand, the BCC structure is more sensitive to the Bethe lattice approximation 
and, on the other hand, the treatment of the off-diagonal disorder in CPA is also more 
difficult. As for Fcc-based structures, Erand@) displays an asymmetrical behaviour and 
first-nearest-neighbour interactions with a very strong concentration dependence (see 
figure 5 ) .  For second-nearest-neighbour interactions the same behaviour is obtained, 
that is a smoother variation as a function of composition for the CPA results; let us 
mention that the contribution of the second nearest neighbours to the ordering energy 
is much smaller than that of the first nearest neighbours. Once more, the charge transfer 
is small. AnNi = 0.135 electrons/atom for x = 0.5 and very similar to that obtained for 
the FCC lattice, 

3.2.3. Ground states at zero temperature. We have seen in the previous section that 
TB-GPM-CPA and TB-CBLM give practically the same results concerning the energy of the 
random alloy and the effective pair interactions. To study the complete phase diagram 
TB-CBLM has the advantage that it can also be used to st~udy CSRO in liquid phases by 
using a scalar approximation [6,24.33], In this section we first present the results using 
the TB-CBLM method to obtain the phase diagram, that is ground states at zero tempera- 
ture. 

For the FCC lattice, taking into account the values of EPI, the structures to be adopted 
bythe alloywill beL1,structurefor.r = 0.25and0.75, andtheLlostructureforx = 0.5. 
For the BCC lattice the structure will be DO, forx = 0.25 and 0.75, and B2 forx = 0.5. 
We have reported in table 3 the energies of these different compounds at T = 0 K. For 
x = 0.25, no compound exists and one can see that the L1, and DO, structures display 
thesameweakenergyofformation. Forx = 0.33, wedo not havegroundstateswith the 
BCC or FCC structures but, nevertheless, calculations have been made for these two 
structures with the maximum ordering. In each case, the value obtained for the energy 
of formation displays a more positive value than the one obtained by recursion for the 
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Table 3. Calculated energies of formation for the BCC and FCC superstructures using the 
TB-CBLM method. 

Afi:rd(W 

XNi FCC BCC Compounds 

0.25 -19.3 ( L l J  -19.3(DO,) - 
0.33 -27.7 -29.4 -35 (E94 
0.50 -@.8fL1,1 -45.0 (B21 -47 (82) . .  

~ "I 

-37.1 (6G) 
0.75 -4'.8(L1,) -44.6(P01) -46.4 (DO,) 

Eg3phase. Forx = 0.5, we findthat theB2structureismorestablethantheLlostructure 
or the B32 structure. Forx  = 0.75, the LI2 and DO3 structures display a more positive 
value than that obtained by the recursion method for the DOZ4 structure, in complete 
agreement with the experimental observations. However, this difference is small and to 
know if it is significant we have performed a calculation based on the recursion method 
for the L12 compound. We obtain -44.9 kl, in complete agreement with the value 
provided by the CBLM method. 

4. Conclusions 

In this paper we have shown that a model tight-binding Hamiltonian is able to reproduce 
the experimental energies of formation found in the Ni-Ti system. The large interaction 
betweenthedstatesofNi and thedstatesofTiis themain factorgoveming theelectronic 
structure of these compounds leading to a strung short-range order on the Ni-rich side. 
To extract effective pair interactions we have used either TB-CBLM or TB-GPM-CPA, the 
energy of formation of the alloy being represented by a non-local term describing the 
energy of the random alloy and by an ordering term given these concentration-dependent 
effective pair interactions. At T = 0 K we have obtained that forx = 0.5 the B2structure 
is more stable than the Llo  or B32 structures while for x = 0.75 the DOL4 structure is 
more stable than the L12 or DO3 structures. For x = 0.33, the complex cubic structure 
Eg3 is predicted to be more stable with regard to a mixture of the NiTi B2 and the Ti HCP 
phases, since its calculated formation energy is above the line connecting the formation 
energies of the Ti HCP and NiTi B2 phases. All these results are in good agreement with 
the experimental observations. The complete determination of the phase diagram by 
combining the tetrahedron approximation of the CVM and the concentration-dependent 
EPI obtained in this way will be presented in a forthcoming paper. 
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